
Towards Improved Certification of Complex
FinTech Systems – A Requirements-based Approach

Sepehr Sharifi, Daniel Amyot, John Mylopoulos
School of EECS

University of Ottawa
Ottawa, Canada

{sshar190 | damyot | jmylopou}@uottawa.ca

Patrick McLaughlin
Brane Capital

Ottawa, Canada
patrick@brane.capital

Ray Feodoroff
School of CIT

University of Wollongong
Wollongong, Australia

agentorientedassurancecases@gmail.com

Abstract—Context: Financial Technology (FinTech) systems,
especially those involving custody of digital assets such as
cryptocurrencies, are quickly emerging as a new class of software
systems with associated high risks. So far, incidents involving
such systems have costed billions of dollars. Problem: Providing
regulators and insurers with certification cannot simply rely on
simple reports generated by auditors. Current practices require
a more rigorous and systematic approach for capturing and
communicating the design rationale in order to certify such
systems. Method: The User Requirements Notation (URN) is used
to model and analyze the requirements of a FinTech system and
capture its design rationale. Then, the Systems Theoretic Process
Analysis (STPA) method is applied to the URN model to evaluate
system hazards and introduce safety constraints/requirements
that aim to avoid bad situations from happening (e.g., loss of
assets, private data, or reputation). The results augment the
URN model and are conveyed to the stakeholders (especially
regulators, auditors, and insurers) in the form of assurance cases.
Results: Guidelines are now available to model the requirements
of FinTech systems and produce assurance cases for certification.
The guidelines are illustrated with a real digital asset custodian
example. Conclusion: This work provides new requirements-
based guidelines exploiting URN and STPA that can potentially
facilitate the certification process of FinTech systems.

Index Terms—Assurance cases, Certification, Financial Tech-
nologies, Goal-oriented Requirements Engineering, Safety, STPA,
User Requirements Notation

I. INTRODUCTION

Financial Technology (FinTech) systems aim to automate
and improve the delivery and usage of sophisticated financial
services. Most such systems are becoming safety critical as
they carry larger risks for their owners and users. Take the
example of FinTech systems that manipulate digital assets
(DA) such as Bitcoins. Despite many claims about their
security and safety properties, they are prone to various types
of breaches and failures that now cost billions of dollars [1].
Furthermore, with the proliferation of DAs, FinTech systems
that involve custody or transfer of large amounts of DAs act
as hubs in the highly-interconnected financial network, thus
becoming a critical safety point that would have systemic
effects in case of failure [2].

It is worth mentioning that many clients of such services
are not private investors; rather, they are pension funds that
hold many people’s retirement savings. Loss of a pension
fund’s assets certainly affects the livelihoods of many people.

Therefore, the financial industry has a societal responsibility to
move towards more rigorous practices that can ensure client’s
asset safety, given the added complexity of novel technologies
that are increasingly embedded in their processes and products.

Currently, financial institutions must assure regulators (pol-
icy makers, authorities, etc.) that their systems minimize the
risk of losing investors’ assets [3]. Such FinTech systems
must also address multi-faceted concerns (finance, business,
software, cryptography, distributed ledgers, regulations) and
convey compliance and risk assessment results in a clear
and understandable manner to certification authorities. Nev-
ertheless, with the added complexity of FinTech systems,
financial regulators and auditors face a challenge in assessing
the compliance of such systems’ requirements and designs to
the regulations. Although the regulatory stakeholders should
add to their capabilities in assessing more technologically
complex systems, FinTech developers should also capture and
convey compliance and risk assessment results in a clear and
understandable manner to certification authorities.

This paper builds on early work [4], and reports on a
project that uses requirements engineering techniques and
standards that are foreign to the FinTech industry, but common
in other safety-critical engineering domains, in addition to
current financial regulations, to rise up to the challenge of
building a digital asset custody system that keeps institutional
investors’ assets safe (e.g., through a set of multi-signature
smart contracts and wallets).

The main contribution of this paper is a set of requirements-
based guidelines that apply well-known approaches from
safety-critical domains to enable an improved and more rigor-
ous certification of FinTech systems. These guidelines exploit
goal modeling, systemic safety assessment, and assurance
case development. This paper also provides an illustrative
example, based on an industrial collaboration project, where
these guidelines are applied.

Inspired by Design Science [5], we have identified and
scoped our problem by discussing with experts at a FinTech
company and by assessing related work (Sect. II). We have
iteratively and rigorously developed and validated recom-
mended guidelines towards developing models that would
improve the FinTech certification process (Sect. III). These
guidelines are the main artefact produced in our research. The

relevance of these guidelines comes from a real problem in a
real FinTech organization, and they are illustrated in Sect. IV
on an example that captures a subset of the problem and of
its solution. Finally, Sections V and VI respectively discuss
lessons learned and our conclusions.

II. BACKGROUND

This section provides background information on concepts
relevant to this paper. First, an overview of the current state
of FinTech certification is presented. Then, System Theoretic
Process Analysis [6] is introduced, as it forms a major compo-
nent of the proposed guidelines. STPA allows the developers to
design controls on a system’s behavior in a top-down manner
while ensuring the hierarchy of controls satisfy top-level goals.
Finally, assurance cases are briefly discussed.

A. FinTech Certification

Information security has been the focus of much work [7],
but many challenges remain in a FinTech context. In North-
America, the most notable certification applied to financial
entities is the System and Organization Controls (SOC) from
the American Institute of Chartered Professional Accountants
(AICPA) [8], where controls are essentially the tools that are
imposed on the system to ensure its safety. Different SOC
reports approach system controls from different perspectives,
namely compliance, operations, and financial reporting. The
most relevant report on system-level and entity-level opera-
tional controls of a financial service organization is the SOC2
report, based on the guidelines provided by the AICPA [9]
and CPA Canada, known as Trust Services Principles and
Criteria (TSC) for Security, Availability, Processing Integrity
and Confidentiality. All standards focus on controlling the
behavior of the system during its operation [10].

Systems developed in the FinTech industry have major
human and software elements, and are hence considered socio-
technical systems. Goal modeling has shown its utility when
it comes to capturing the needs of stakeholders to be fulfilled
by such systems, while providing support for compliance,
trade-off and decision-making [11]. The User Requirements
Notation (URN) [12] integrates the Goal-oriented Requirement
Language (GRL) with the Use Case Maps (UCM) process no-
tation, together with traceability information and the ability to
profile the language to specific domains [13]. URN combines
goal and process views used in requirements engineering ac-
tivities, but also in regulatory compliance [14] and regulatory
intelligence [15]. Though much work has been done on goal-
based requirements engineering, to our knowledge, none has
addressed FinTech certification except for our own early work
in this area [4].

B. System Theoretic Process Analysis (STPA)

STPA, proposed by Leveson [6], is a hazard analysis
methodology based on System Theoretic Accident Model and
Processes (STAMP). This methodology evaluates possible
ways in which an undesirable systemic event (loss) can occur.
It also allows for design of a hierarchy of controls on the

system and its components. There are parts of STPA that are
relevant to our requirements-based certification approach.

STAMP defines loss states as system states that are unac-
ceptable to the stakeholders of the system, e.g., loss of human
life, of assets, or of reputation. Furthermore, the system states
where nothing is yet lost but that can transition to a loss state,
given adverse environmental conditions, are called hazards [6].
Figure 1 illustrates various states of a system, i.e., safe, hazard,
and loss states, together with their transitions. In the case of a
passenger transport train, a passenger train is in a loss state if
one of its passengers has fallen off the wagon and is harmed
(A1), whereas a related hazard state can be where the train’s
doors are open while it is moving (H1). Given the state of the
system’ environment, e.g., the curvature of the railway (C1),
passengers can fall off the train if it approaches a curve while
its doors are open, thus triggering the loss state. Alternatively,
the train might be travelling on an almost straight path (C3)
until it reaches its next stop (stationary train with open doors
is considered a safe state, i.e., S3).

Fig. 1. The relationship among a system’s safe states (green), hazard states
(yellow), and loss states (red), and its environmental states (grey).

STPA applies these concepts to the hierarchical control
structure of a system in order to identify possible ways
the system can transition to a hazard state. Such control
actions that can lead to hazards are called Unsafe Control
Actions (UCAs). These UCAs then can act as a basis for
identification of causal scenarios that might cause the UCAs.
These hazards are then mitigated with the introduction of
traceable safety constraints and requirements based on design
recommendations [6].

An important benefit of using STPA as part of a
requirements-based certification approach is twofold. First,
STPA has a broad definition of loss that is amenable to the
types that are commonly defined by the FinTech regulatory
stakeholders, i.e., loss of clients’ assets (e.g., money or cryp-
tocurrencies), loss of service provider’s reputation, and loss
of clients’ private information. A detailed list of potential
system losses is provided in Table I. Second, STPA provides a
methodology to systematically define system controls that are
traceable to the losses we are trying to prevent.

There also exists examples of applications of STPA within
security analysis [16] and combined safety and security anal-
ysis [17].

C. Assurance Cases

Assurance cases document evidence that provides a convinc-
ing and valid argument that critical claims regarding properties
(often related to safety) are justified for a given system in a
given environment. Many notations and tools have been pro-
posed in order to create structured assurance arguments [18],
including the Goal Structuring Notation (GSN) [19].

As an alternative to GSN, Feodoroff [20]–[22] has also
proposed that GRL goal models can document arguments
and justifications (for system-level qualities) as part of design
rationales rather than in other formats, which lack the onto-
logical richness of URN, while also preventing assurance case
development activities that may be redundant. GRL supports
concepts for actors, their intentional elements (goals, softgoals,
tasks, and resources, and their relationships (AND/OR decom-
positions, dependencies, and weighted contributions). As pre-
vious experience with the application of URN in a regulatory
compliance context has shown [14], providing regulators with
(objective) evidence and their links to qualities in terms of
URN models would help attain a “clearer” picture of the sys-
tem and decide on its acceptability with respect to safety risks.
Feodoroff argues that this picture is clearer because weighted
dialogical reasoning, as provided by GRL, can account for the
weight of assurance claimed versus counter-claims.

This notion of balancing claims with counter-claims is now
the new preferred style of reasoning for assurance cases, which
is described as counterfactual [23]. Counterfactual reasoning
has always been native to GRL (and i*) via the nature of the
contribution relations, which can be positive or negative, at
different levels of strength.

D. Related Work

Approaches for risk modelling such as CORAS [24] and
FTA [25] are also used for security risk modelling. FTA offers
interesting variants such as attack trees, but was developed
over 80 years ago when system complexity was far simpler
than today. CORAS is based upon models in risk standards but
has not kept pace with the gravitation towards assurance cases
in the past decade. While risk is a component of any assurance
case, the requirement for claim, argument, and evidence now
predominates over areas other than risk, especially compliance.
Both CORAS and FTA also require a system model to base
the structure of a risk tree, but neither approach provides an
elicitation mechanism of the level of rigor now applied for
STPA [26]. Certainly, STPA is now being enshrined in an
SAE standard1, because it is recognised as superior to risk-
based tree approaches for complex systems. The use of a
risk calculation approach can always be applied post STPA to
provide a risk position post analysis if required [27], especially
since the threats and the corresponding mitigations would
already have been provided by STPA.

Historically, there have been several approaches that at-
tempted to incorporate GSN models into the design process,

1https://www.sae.org/standards/content/j3187 202202/

but required a separate design notation [28]–[31]. These ap-
proaches create a collage of techniques and representations
often with informal relationships between the representations.
This informality makes it hard to ensure evidentiary chain
between the safety analysis, the design, and the assurance
argument. This informality can also lead to information
lossiness between representations. It is counter-intuitive then
how the potential for information lossiness, inherent in any
collage of approaches, cannot but affect comprehension and
therefore confidence in the assurance arguments. Kelly and
McDermid [32] recommend a laborious approach to keeping
the design reasoning and the assurance reasoning synchro-
nized, where the synchronization is required because of the
separation in reasoning spaces.

Indeed, the reasoning style of GSN is now, circa 2020,
deprecated according to Bloomfield and Rushby [33]. The new
“style” of assurance reasoning suggested by Bloomfield and
Rushby is actually counterfactual (see Sect. II-C). The influ-
ence of the outdated case-based reasoning style can otherwise
be seen in approaches that can opt for a notation that could
support counterfactual reasoning, but express the assurance
reasoning archaically [34], so as to maintain the status quo.
Importantly, circa 2020, the introduction of counterfactual
relationships into case-notations is still only a proposal [35, p.
17], so counterfactual reasoning is not available in the more
popular case notations. Assurance reasoning, in a design ratio-
nale notation with counterfactual relationships, can certainly
already be accomplished [22].

It should be noted then that there are a number of ap-
proaches that look at using STPA in association with a non-
counterfactual style of assurance arguments, the STPA being
modelled separately and therefore with an information-lossy
gap with the assurance reasoning [30], [34]. This is more
error-prone than an approach that models the safety analysis
and assurance reasoning within the design notation to keep
information lossiness to a minimum [22].

The motivation for this paper is hence to determine means
to integrate security analysis, design reasoning, and assurance
reasoning within one notation. This work aims to support
economical and coherent counterfactual arguments to enhance
the veracity of assurance cases by the reduction of information
lossiness between representations. We argue that a promiscu-
ous goal-oriented notation facilitates this integration [20], [22].

III. GUIDELINES FOR FINTECH CERTIFICATION

The following guidelines are provided as a means to design
a FinTech system that satisfies systemic qualities (such as
safety, security, privacy, etc.), and communicate the design
artifacts (including additional requirements) to the stakehold-
ers in a manner that would improve the effectiveness and
efficiency of the certification process.

Step-1 (Identify the stakeholders): The first step in mod-
eling the goals of a FinTech system is to gain a holistic
understanding of its stakeholders and their dependencies. Such
view is often called a strategic dependency model in goal-

oriented requirements engineering [36]. Actors can often be
categorized into four major expertise domains:

1) Governance and policy;
2) Regulatory and compliance;
3) Business and operations; and
4) Technical (engineering).

The stakeholders, with varied expertise in the above do-
mains, have unequal understanding of the core of the system.
In an onion-like stakeholder model, we find them in various
layers from the core operational layer, to the system layer
(containing the management and support elements), and then
to the environment layer.

This view is employed in the early stages of the system de-
velopment to draft the Concept of Operations (ConOps) of the
system. Adding a development viewpoint to the ConOps view
would require the list of stakeholders to be augmented with,
e.g., project managers and system developers. The system de-
velopment team is present in all three layers of the system and
has interactions with virtually all other stakeholders (except
negative actors such as hackers).

Various sources of information such as handbooks, stan-
dards, and interviews with stakeholders and decision makers
are used to uncover valuable dependencies. These depen-
dencies, in turn, become the basis for sketching a strategic
dependency model of the system, which starts by outlining the
actors and their directional dependencies, hence enabling the
elicitation of the actor goals. In GRL, the source and target of a
dependency are intentional elements associated with different
actors.

Step-2 (Create a strategic dependency model using
GRL): Using the list of stakeholders that were identified,
a strategic dependency diagram can be created that allows
identifying the high-level goals of various actors and their
inter-dependencies.

Step-3 (Expand the functional goals using UCMs):
After the high-level goals have been refined to system-level
functional goals, they can be further refined using Use Case
Maps (UCMs). UCMs include process-oriented concepts such
as start/end points, responsibilities (i.e., activities), their re-
sponsible system components or actors, and various rela-
tionships (sequencing, guarded choice, concurrency, process
decomposition, timers, and others). UCM and GRL model
elements can also be traced to each other to support alignment,
consistency, or impact analysis [13]. The operational controls
of the system can now be identified, which helps eliciting the
control structure of the system.

Step-4 (Perform STPA): According to the STPA handbook
of Leveson [37], the STPA process for a specific level of
hierarchy is as follows:

• Step-4.1 (Define the systems boundary): The loss states
and the hazard states that could transition to the loss states
under undesirable environmental conditions (see Fig. 1)
must be defined. By defining hazards, the boundary of the
system, i.e., the domain that the designers and engineers
think they can control, is determined.

• Step-4.2 (Define the hierarchical control structure):
The hierarchical control structure of the system must
be developed based on the functional architecture of the
system.

• Step-4.3 (Identify Unsafe Control Actions (UCAs)):
The control actions identified in Step-4.2 can be haz-
ardous in certain contexts if provided, not provided,
applied too soon/too late, or applied for too long/too
short. Identifying these UCAs paves the way to the
identification of paths to hazards.

• Step-4.4 (Identify loss scenarios): Loss scenarios are the
paths that can lead to the hazards. Causal factors can be
identified on the basis of the scenarios and the control
model.

• Step-4.5 (Elicit safety constraints and requirements):
Identification of hazards and UCAs can lead to the intro-
duction of safety constraints, where the identification of
the causal factors can lead to making design recommen-
dations and deriving corresponding safety requirements.

Step-5 (Create assurance cases based on STPA-related
argumentation): The results of Step-1 to Step-3 can iter-
atively be updated based on the results of Step-4. Then,
assurance cases can focus on presenting the design rationale
rather than trying to prove a quality by omission or trying to
prove safety after the system has been fully developed (which
is prone to confirmation bias [38]).

IV. AN ILLUSTRATIVE EXAMPLE

The selected FinTech example is a commercial digital assets
custody system. The integration of Distributed Ledger Tech-
nologies (DLTs) into financial systems is becoming increas-
ingly popular as the utilization of digital assets is growing.
The parties that are mandated with keeping digital assets safe
are called digital assets custodians (DA Custodians) or crypto-
custodians. They act similarly to custodian banks but focus on
digital assets.

Customers should trust the DA custodians to keep their
digital assets safe, other banks should trust them to do business
with them, and regulators should trust these DA custodians
to allow them to operate. Thus, SOC certifications are used
to provide a part of that trust. The guidelines mentioned in
Section III are applied to the aforementioned system. The
following subsections, provide an excerpt of the results that
are shareable (due to confidentiality constraints).

A. Step-1 to Step-3: Goal and Process Models

1) Stakeholder identification: The following stakeholders
where identified for the digital assets custodian system:

• System Operations: Normal Operators (Finance Man-
ager and Technical Users), Maintenance Ops (Hard-
ware, Software), Operational Support (Transaction Min-
ing, Customer Support), Interfacing System (Cloud, In-
ternal Network).

• System: Internal Consultants (Compliance Officer),
Client (Investors, Management), Functional Beneficiary
(Institutional Funds).

• System Environment: Customer (White-label Partners),
Interfacing System (Crypto-exchanges, Blockchains Plat-
forms, Insurers), Regulators (Securities, Judiciary, Tax
and KYC/AML2 Authorities, Non-statutory Regulators
including standards, consortia, and Self-Regulatory Or-
ganizations), Negative Actors (Competitor, Hacker), Ex-
ternal Consultants (Business Auditor, Security Specialist,
Legal Counsel).

Note the high number of regulatory stakeholders that are
present in the ecosystem, which is typical of FinTech systems.

2) Elicit the strategic dependency model: A slice of the
strategic dependency model is provided in Figure 2, illustrating
how three actors, namely the Underwriter, the Securities Reg-
ulator, and the Judiciary, depend on the system’s goal Report
to produce the Security Report and on the Auditor’s ability to
perform verification (Verify). Multiple in/out dependency links
are a shorthand for a distributive dependency relationships,
e.g., there are 6 pairwise dependency relationships that have
Security Report as their dependum. Here, the Brane actor is the
DA custodian and service provider.

The creation of the GRL model has allowed the organization
to discover critical resources, i.e., resources associated with a
large number of dependencies which, if not realized properly,
would result in the simultaneous dissatisfaction of multiple
stakeholders. Thus, the requirements elicitation, system de-
velopment/testing, and certification efforts can be prioritized
in accordance with the criticality of the dependums and the
system goals that provide them.

Note how many stakeholders depend on the Auditor, which
shows how auditing companies (e.g., the “Big Four”, namely
KPMG, Deloitte, EY, and PwC) are playing a major role in
the FinTech ecosystem.

3) Elicit the process models: The main concern of financial
regulators is the controls on systems operations. To analyze the
operational aspect of the system, the GRL model is expanded
by defining Use Case Map processes for functional goals of the
system. A process model of the Perform Due Diligence system
goal is provided in Figure 3. The UCM model allows for
analysis of the business process. The operationalization of goal
Perform Due Diligence starts by the activity Evaluate Jurisdiction,
which is the responsibility of the service provider (Brane), and
yields one of two possible outcomes (illustrated by an OR-
fork), i.e., being of low or high risk (the latter leading to the
rejection of the client).

Performing operational analysis enables the organization to
check the controls it has in place, assess alternative ones,
provide a means to demonstrate compliance to the regulators,
and have a basis for the analysis of systemic safety.

As an indicator of the size of the requirements/design
model, the full URN model of the FinTech’s digital asset
management system, developed with the jUCMNav tool [39],
is composed of 15 actors, 100 intentional elements, and 96
intentional links for the GRL view, and of 5 components, 84

2Know Your Client (KYC) and Anti-Money Laundering (AML) efforts are
crucial in the financial industry.

TABLE I
LIST OF SYSTEM LOSSES

ID System Losses
L.1 Loss of clients’ digital assets under custody.
L.2 Loss of custodian’s infrastructure.
L.3 Loss of custodian’s reputation.
L.4 Loss of regulatory compliance of the custodian’s operation.
L.5 Loss of clients’ private/confidential information.

responsibilities, and 22 interconnected process maps with up
to 7 levels of nested decomposition for the UCM view.

B. Step-4: Perform STPA

1) Define the system boundary: Based on the top-level
goals of the system, the loss states (Table I) and their respec-
tive hazards (Table II) are defined to determine the boundary
of the system.

For the identified system-level hazards, a set of safety
constraints can be expressed using inverted conditions and
conditional statements, in case hazards should be enforced,
or how the system must prevent or minimize losses in case
the hazard does occur [40]. Inverted conditions are expressed
as: <System>&<Condition to Enforce>.
On their side, the conditional statements are stated as: if
<Hazard> occurs, then <What needs to be done to prevent or
minimize loss>.

2) Define the hierarchical control structure: STAMP treats
system safety (and other systemic qualities) as a dynamic
control problem.

A section of the hierarchical control diagram of the Digital
Assets Custody system is provided. Figure 4 illustrates the
system during account setup and normal state of operation.

Control diagrams are structured in the following manner:
controllers issue commands (directly or through actuators)
to their controlled process, and receive feedback from them
(directly or through sensors). In Figure 4, A.1 (Submit Authen-
tication Transaction) is an input from the Human Controller
(which is the operations staff of the company) to the Dis-
tributed Ledger (which is a controlled process). A-FB.1 (Log
of Distributed Ledger Transactions with The Recorded Authen-
tication Transaction) is the feedback that would be provided
from the Distributed Ledger to the Human Controller. A.1 and
A-FB.1 are instances of the A and A-FB shown in Figure 4
respectively, there can be many other control actions and
feedback between Human Controller and Distributed Ledger.

3) Identify the UCAs: Regarding control action A.1, there
are 4 types of UCAs that can occur, as mentioned in Sec-
tion III. Table IV illustrates when A.1 can be hazardous if
provided, not provided, or provided too soon/too late. Since
this action is discrete (either an authentication transaction is
submitted or not), not a continuous action, the last category
of UCAs (applied for tool long/too short) does not apply.

4) Identify the loss scenarios: Table V provides a list of
causal scenarios that have been developed based on the unsafe
control action (UCA.101). These scenarios can be developed
based on various factors, e.g., wrong process model [6], [37].

TABLE II
LIST OF SYSTEM HAZARDS

ID System Hazards Traceability to Losses
H.1 Lose existing certifications. L.2, L.3
H.2 Required certification not obtained. L.2, L.3
H.3 Applied laws and regulations are violated. L.2, L.3, L.4
H.4 Unauthorized (potential/actual) access to the clients’ DAs that are under the custodian’s custody. L.1, L.3, L.5
H.5 Unauthorized (potential/actual) access to the custodian’s assets. L.2, L.3
H.6 The (clients’/custodian’s) assets are transferred to an unintended destination. L.1/L.2, A.3
H.7 Loss of authorized access to the (clients’/custodian’s) assets. L.1/L.2, L.3
H.8 The funds are not transferred to an intended destination within the acceptable time-frame after a valid transaction

request has been approved.
L.1, L.3

H.9 Loss of transactions log and the balance of clients’ digital assets under custody. L.1, L.3, L.5
H.10 Client dissatisfied with the time and performance of the custodian’s services. L.3
H.11 Custodian’s expenditure exceeds the planned amount. L.2

TABLE III
LIST OF SAFETY CONSTRAINTS RELATED TO THE HAZARDS

Hazard ID Safety Constraints
H.1 SC.1: System shall not operate outside the bounds set by the certification authority.

SC.2: If the System loses its existing certifications, then the System shall re-obtain the certifications.
SC.3: If the System loses its existing certifications, then the System shall disclose and reassure the client of hazards and recovery actions.

H.2 SC.4: System shall operate within the bounds set by the certification authority.
SC.5: If the System has not obtained required certification, then it shall augment/modify its internal controls and processes to become
compliant with certification criteria.

H.3 SC.6: System shall not operate out of the bounds of laws and regulations of its jurisdiction.
SC.7: If the System has violated its applied laws and regulations, then it shall modify and correct its internal controls and processes to be
regulatory compliant, if it can be done within acceptable time frame; or
SC.8: If the System has violated its applied laws and regulations, then it shall relegate custody of clients’ DA, if regulatory compliance
cannot be restored within acceptable time frame.

H.4 SC.9: Keys to assets shall only be shared with authorized parties.
SC.10: Unauthorized parties shall not know who has the means for authorized access (keys) to client assets.
SC.11: Unauthorized parties shall not (be able to) gain access to the clients’ assets.
SC.12: If there is an unauthorized access to client assets, the clients’ DA shall be secured by re-establishing secure access and elimination
of unsecure access.
SC.13: System shall verify authorized access of the transaction requester.

H.5 SC.14: System shall prevent unauthorized parties from gaining access to custodian assets.
SC.15: If unauthorized parties gain access to custodian assets, the custodian shall minimize the impact of loss on client assets.
SC.16: If unauthorized parties gain access to custodian assets, they should not be able to reverse engineer custodian trade secrets (critical
information about the custody service process).
SC.17: If unauthorized parties gain access to custodian assets, the custodian should retrieve and secure the asset.

H.6 SC.18: System shall not allow the custodian to transfer (client/custodian) assets to a destination not intended (by the client/custodian).
H.7 SC.19: The means for authorized access to the assets shall not be forgot/lost by the authorized party.

SC.20: : If the authorized access to the assets is lost, then it shall be recovered by an authorized party.
H.8 SC.21: System shall not allow funds to be transferred to an intended destination outside an acceptable time frame after a valid Transaction

(Tx) request has been approved.
H.9 SC.22: System shall not lose the Tx log and the current balance of client assets under custody.

SC.23: If the Tx log and the current balance of client digital assets have been lost, the Tx log and current balance of client assets under
custody shall be recovered by the custodian.

H.10 SC.24: System shall perform in a way that ensures satisfaction of clients from custodian services.
SC.25: If clients become dissatisfied with the time and performance of custodian services, the custodian shall improve the time and
performance of its services to restore satisfaction.

H.11 SC.26: System shall not incur excessive costs as a result of re-doing normal operational tasks.

TABLE IV
SAMPLE UNSAFE CONTROL ACTIONS (UCAS) IDENTIFIED FOR THE CONTROL ACTION A1 (Submit Authentication Transaction).

Control Action Provided Not Provided Provided Too Soon/Too
Late

Applied for Too Long /Too
Short

A1: Submit Authentication
Transaction

UCA.101: The operator
submits the Tx to the DLT
with the wrong parameters
(wrong source address,
destination address,
amount, nonce value).
[H.10]

UCA.102: The operator
does not submit the Tx to
the DLT. [H.8]

UCA.103: The operator
submits the Tx to the DLT
before the integrity of the
key generator has been
verified by the External
Auditor. [H.10, H.11]

–

Fig. 2. A slice of the FinTech system’s strategic dependency model during its operation, specified in GRL. Note that the criticality of a resource is proportional
to its involvement in dependencies as a dependum.

Fig. 3. Extract of the UCM model that describes the Perform Due Diligence goal, which is a subgoal of the Provide DA Custody Service in Figure 2.

TABLE V
LIST OF CAUSAL SCENARIOS FOR UCA.101 (The operator submits transaction to the DLT with the wrong parameters.)

ID Causal Scenarios
CS.1 Operator believes that she has input the right parameters.
CS.2 Operator has received wrong input parameters.
CS.3 Operator believes she knows how to create, sign and submit Txs to DLT but creates and signs Txs with wrong parameters.

5) Elicit safety constraints and requirements: Using the
causal scenarios that were defined in Table V, design rec-
ommendations (Table VI) and safety constraints can be made
(Table III). These design recommendations then can be further
refined into requirements (Table VII).

C. Step-5: Assurance Cases

Based on the previous steps, a URN-based assurance case
is presented in Figures 5 and 6. Our approach to assurance
cases is that they should focus on the risks and shortcomings
rather than trying to make the argumentation that the system
is free of hazards. As many system safety engineers would
concur, it is not possible to know all risks to the system

in advance. Therefore, arguing that all risks to the system
have been mitigated lacks merit. The GRL representations of
Figures 5 and 6 show the dialectic form of the safety case
pattern “all hazards are mitigated”, which affords the reader a
means of assessing the graph for the quality of indefeasibility
and therefore of confidence.

The elements have different stereotypes that are defined
between << and >>. The links are also make contribution
links, i.e., if hazard H.9 occurs, loss L.3 might occur and does
not require any contributions from other hazards.

TABLE VI
LIST OF SAFETY CONSTRAINTS AND DESIGN RECOMMENDATIONS FOR UCA.101

ID Safety Constraint/Design Recommendation
SC.101 The operator must not submit Tx to the DLT with the wrong parameters (wrong source address, destination address, amount, nonce value).

DR.101.1 System should require confirmation of parameters before submitting a Tx.
DR.101.2 System/process should minimize the number of times parameters are entered manually.
DR.101.3 Training of operators should include information about what are the mechanics of DLTs and how they can create, sign, submit & verify

authentication Tx to the DLT.
DR.101.4 The operators’ manual has instructions on how to create, sign, submit, & verify the authentication Tx to the DLT.
DR.101.5 System shall instruct operator of the next step of the procedure after inputting each parameter.

TABLE VII
LIST OF REQUIREMENTS ELICITED FROM TABLE VI

Requirement Traceability to DRs Verification Method
R.101.1: System shall display given transaction Tx parameters (source/destination address, amount,
currency, nonce value) to user before the final submission of the Tx to the DLT.

DR101.1 Demonstration

R.101.2: System shall prefill the input parameters for Auth Tx creation and signing. DR.101.2 Demonstrations,
Black-box testing

R.101.3: System manual shall contain the steps for creating, signing, submitting and verifying the
authentication Tx to the DLT.

DR.101.4 Demonstration

R.101.4: System shall instruct operator of what is the next step of the procedure after inputting each
parameter.

DR.101.5 Scenario-testing

Fig. 4. The control diagram of the Digital Assets Custody system during
account setup and normal state of operation

V. DISCUSSION

An important challenge in the certification of a FinTech
system is to design the system with safety and privacy in mind
and communicate the results to the regulators in a way that

Fig. 5. The assurance case that presents the artifacts from losses until UCAs

enables them to efficiently and effectively evaluate the system.
The use of STPA provides a systematic approach to design for
safety and privacy (or any other systemic property) as well as
a clear traceability between hazards and design. An assurance
case presents the results of STPA to the regulators more
effectively than simple tables by leveraging the traceability
provided by STPA.

We learned many lessons by applying our proposed guide-
lines. First, design and certification of such socio-technical
systems require frequent meetings with various stakeholders,
especially regulators, to better operationalize their goals and
requirements.

Our guidelines have also mainly considered privacy and
safety. Security as well as many ethical considerations, includ-
ing fairness, lack of discrimination, and lack of bias, are also
systemic qualities. One could argue that the same approach
can be used to design and certify more ethical socio-technical
systems.

System developers were able to introduce controls to the
systems that were explicitly traceable to the hazards that they

Fig. 6. The rest of the assurance case presented in Figure 5 from UCAs

were trying to address. Furthermore, these controls (stated
as requirements, see Table VII) have a verification method
associated with them that addresses the need for specifying
control verification methods in [8].

Despite the fact that the current work was motivated by a
FinTech certification problem, we believe that the proposed
guidelines could potentially be applied to socio-technical
systems in other domains such as healthcare and public
administration while adapting the implementation of the steps
to the context of the domain.

At the same time, there are important limitations to our
work:

• The guidelines were applied to one system only.
• All steps were done manually by the authors, possibly

introducing bias. However, we expect some parts to be
automatable in the future.

• Much of the artifacts produced by the research contain
confidential information that cannot be publicly shared;
this negatively impacts scrutiny in this paper.

• Although many stakeholders involved in the project, such
as the management and the auditors, confirmed informally
that this approach is clearer than the previous certification
audits and reporting methods, additional data and formal
assessments are needed to confirm the scale of cost,
time, and thoroughness improvement resulting from these
guidelines.

• Many references cited in this paper provide detailed
advice on how to perform the steps, on the pitfalls of each
step, and on how to evaluate models’ completeness and
correctness. However, there might be further adjustments
needed by such generic advice for FinTech systems.

VI. CONCLUSIONS AND FUTURE WORK

This paper partially addressed several challenges related
to certifying novel FinTech systems, especially the ones
employing complex technologies such as DLTs. A set of
guidelines for developing the requirements and design of a
FinTech system that addresses the systemic qualities required
by certifications is provided. These guidelines are based on
goal-based modeling, process modeling, and systemic safety
analysis practices. They also help conveying the results to non-
technical stakeholders. The guidelines were illustrated using a
commercial FinTech system.

For future work, fundamental concepts could be integrated
in one tool to provide a streamlined approach from goal
modeling, through hazard analysis and assurance case devel-
opment. A URN profile [41] can be provided that supports the
safety concepts as well as the assurance concepts while being
enriched by their respective (formal) semantics [42], [43].

Additionally, the guidelines could be applied to more case
studies considering other systemic qualities such as availabil-
ity, privacy, and fairness. Common generalization strategies for
multiple case studies could be used along the way [44]. Such
case studies would improve the guidelines and would also
provide data on the effectiveness of the approach on improving
the certification process.

ACKNOWLEDGMENT

This work was supported by a Mitacs Accelerate research
project titled “Goal-oriented Safety-Guided Design and Assur-
ance for FinTech”, and by Brane Capital.

REFERENCES

[1] M. Rauchs, A. Blandin, K. Klein, G. C. Pieters, M. Recanatini, and
B. Z. Zhang, 2nd global cryptoasset benchmarking study. Cambridge
Centre for Alternative Finance (CCAF), 2018.

[2] M. Haentjens, T. de Graaf, and I. Kokorin, “The Failed Hopes of
Disintermediation: Crypto-Custodian Insolvency, Legal Risks and How
to Avoid Them,” Singapore Journal of Legal Studies, vol. September,
pp. 526–563, 2020.

[3] Office of the Comptroller of the Currency, “Custody services –
comptroller’s handbook, USA,” 2002.

[4] S. Sharifi, P. McLaughlin, D. Amyot, and J. Mylopoulos, “Goal
modeling for fintech certification,” in Proceedings of the Thirteenth
International iStar Workshop co-located with 28th IEEE International
Requirements Engineering Conference (RE 2020), ser. CEUR Workshop
Proceedings, R. S. S. Guizzardi and G. Mussbacher, Eds., vol. 2641.
CEUR-WS.org, 2020, pp. 73–78. [Online]. Available: http://ceur-
ws.org/Vol-2641/paper 13.pdf

[5] R. J. Wieringa, Design science methodology for information systems and
software engineering. Springer, 2014.

[6] N. G. Leveson, Engineering a safer world: Systems thinking applied to
safety. Boston, USA: The MIT Press, 2016.

[7] M. Hulshof and M. Daneva, “Benefits and challenges in information
security certification – a systematic literature review,” in Business
Modeling and Software Design, B. Shishkov, Ed. Cham: Springer
International Publishing, 2021, pp. 154–169.

[8] American Institute of CPAs (AICPA), “System and organization con-
trols: SOC suite of services,” https://www.aicpa.org/soc, 2021.

[9] ——, “Trust services principles and criteria (TSC) for security, avail-
ability, processing integrity and confidentiality,” https://bit.ly/TSC-2017-
2020, 2020.

[10] S. Psaila, “Perspective: Cryptocurrency Security Standard (CCSS),”
https://bit.ly/3eJuYav, 2019.

[11] J. Horkoff et al., “Goal-oriented requirements engineering: an extended
systematic mapping study,” Requirements Engineering, vol. 24, no. 2,
pp. 133–160, 2019.

[12] ITU-T, “Recommendation Z.151 (10/18): User Requirements Notation
(URN) - Language Definition,” https://www.itu.int/rec/T-REC-Z.151/en,
2018.

[13] D. Amyot, O. Akhigbe, M. Baslyman, S. Ghanavati, M. Ghasemi,
J. Hassine, L. Lessard, G. Mussbacher, K. Shen, and E. Yu,
“Combining goal modelling with business process modelling two
decades of experience with the User Requirements Notation standard,”
Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model., vol. 17, 2022.
[Online]. Available: https://doi.org/10.18417/emisa.17.2

[14] O. Akhigbe, D. Amyot, and G. Richards, “A systematic literature map-
ping of goal and non-goal modelling methods for legal and regulatory
compliance,” Requirements Engineering, vol. 24, no. 4, pp. 459–481,
2019.

[15] O. Akhigbe, D. Amyot, G. Richards, and L. Lessard, “GoRIM: a model-
driven method for enhancing regulatory intelligence,” Software and
Systems Modeling, pp. 1–29, 2021.

[16] J. M. Sayers, B. E. Feighery, and M. T. Span, “A STPA-Sec case
study: Eliciting early security requirements for a small unmanned aerial
system,” in 2020 IEEE Systems Security Symposium (SSS), 2020, pp.
1–8.

[17] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty, and
S. Sezer, “STPA-SafeSec: Safety and security analysis for
cyber-physical systems,” Journal of Information Security and
Applications, vol. 34, pp. 183–196, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214212616300850

[18] D. J. Rinehart, J. C. Knight, and J. Rowanhill, “Current prac-
tices in constructing and evaluating assurance cases with appli-
cations to aviation,” NASA, Tech. Rep. CR2015-218678, 2015,
https://ntrs.nasa.gov/search.jsp?R=20150002819.

[19] SCSC, “Goal Structuring Notation Community Standard (Version 2),”
2018, https://scsc.uk/scsc-141B.

[20] R. Feodoroff, “URN in place of GSN - Design Rationale versus
Assurance Argument,” 2016.

[21] ——, “Intentional enterprise architecture,” in IEEE Systems Conference
(SysCon). USA: IEEE, 2016, pp. 1–8.

[22] ——, “Back to the Future – Pollock versus Toulmin,” 2018.
[23] R. Bloomfield and J. Rushby, “Assurance 2.0: A manifesto,” 2020.
[24] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis:

The CORAS Approach, 1st ed. Springer, 2010.
[26] J. Thomas, “Extending and automating a systems-theoretic

hazard analysis for requirements generation and analysis,” Ph.D.
[25] R. Kumar and M. Stoelinga, “Quantitative security and safety analysis

with attack-fault trees,” in 2017 IEEE 18th International Symposium on
High Assurance Systems Engineering (HASE), 2017, pp. 25–32.

dissertation, Engineering Systems Division, 2013. [Online]. Available:
http://hdl.handle.net/1721.1/81055

[27] C. Bensaci, Y. Zennir, D. Pomorski, F. Innal, Y. Liu, and
C. Tolba, “Stpa and bowtie risk analysis study for centralized and
hierarchical control architectures comparison,” Alexandria Engineering
Journal, vol. 59, no. 5, pp. 3799–3816, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1110016820303045

[28] I. Bate, “Systematic approaches to understanding and evaluating design
trade-offs,” J. Syst. Softw., vol. 81, no. 8, p. 1253–1271, aug 2008.
[Online]. Available: https://doi.org/10.1016/j.jss.2007.10.032

[29] W. Wu and T. Kelly, “Safety tactics for software architecture design,” in
Proceedings of the 28th Annual International Computer Software and
Applications Conference, 2004. COMPSAC 2004., 2004, pp. 368–375
vol.1.

[30] C. M. Hirata and S. Nadjm-Tehrani, “Combining GSN and STPA
for safety arguments,” in Computer Safety, Reliability, and Security
- SAFECOMP 2019 Workshops, ser. Lecture Notes in Computer
Science, vol. 11699. Springer, 2019, pp. 5–15. [Online]. Available:
https://doi.org/10.1007/978-3-030-26250-1 1

[31] I. Habli, W. Wu, K. Attwood, and T. Kelly, “Extending argumentation
to goal-oriented requirements engineering,” in Advances in Conceptual
Modeling - Foundations and Applications, ER 2007 Workshops
CMLSA, FP-UML, ONISW, QoIS, RIGiM,SeCoGIS, ser. Lecture Notes
in Computer Science, vol. 4802. Springer, 2007, pp. 306–316.
[Online]. Available: https://doi.org/10.1007/978-3-540-76292-8 36

[32] T. P. Kelly and J. A. McDermid, “A systematic approach to safety case
maintenance,” Reliab. Eng. Syst. Saf., vol. 71, no. 3, pp. 271–284, 2001.
[Online]. Available: https://doi.org/10.1016/S0951-8320(00)00079-X

[33] R. Bloomfield and J. Rushby, “Assurance 2.0,”
CoRR, vol. abs/2004.10474, 2020. [Online]. Available:
https://arxiv.org/abs/2004.10474

[34] J. Vilela, C. Silva, J. Castro, L. E. G. Martins, and
T. Gorschek, “SARSSi*: a safety requirements specification
method based on STAMP/STPA and i* language,” in Anais do
I Brazilian Workshop on Large-scale Critical Systems. Porto
Alegre, RS, Brasil: SBC, 2019, pp. 17–24. [Online]. Available:
https://sol.sbc.org.br/index.php/bware/article/view/7504

[35] R. Bloomfield, G. Fletcher, H. Khlaaf, L. Hinde, and P. Ryan, “Safety
case templates for autonomous systems,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.02625

[36] X. Franch, G. Grau, E. Mayol, C. Quer, C. Ayala, C. Cares, F. Navarrete,
M. Haya, and P. Botella, “Systematic construction of i* strategic
dependency models for socio-technical systems,” International Journal
of Software Engineering and Knowledge Engineering, vol. 17, no. 01,
pp. 79–106, 2007.

[37] N. G. Leveson and J. P. Thomas, STPA handbook.
Cambridge, MA, USA: PSASS, 2018. [Online]. Available:
https://psas.scripts.mit.edu/home/get file.php?name=STPA handbook.pdf

[38] N. G. Leveson, “The use of safety cases in certification and regulation,”
MIT, USA, Tech. Rep. ESD Working Paper ESD-WP-2011-13, 2011,
https://dspace.mit.edu/handle/1721.1/102833.

[39] G. Mussbacher and D. Amyot, “Goal and scenario modeling, analysis,
and transformation with jUCMNav,” in 2009 31st ICSE - Companion
Volume. USA: IEEE CS, 2009, pp. 431–432.

[40] J. M. Rising and N. G. Leveson, “Systems-theoretic process analysis of
space launch vehicles,” Journal of Space Safety Engineering, vol. 5, no.
3-4, pp. 153–183, 2018.

[41] D. Amyot, J. Horkoff, D. Gross, and G. Mussbacher, “A lightweight
GRL profile for i* modeling,” in Advances in Conceptual Modeling -
Challenging Perspectives, C. A. Heuser and G. Pernul, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 254–264.

[42] J. P. Thomas IV, “Extending and automating a systems-theoretic hazard
analysis for requirements generation and analysis,” Ph.D. dissertation,
MIT, USA, 2013.

[43] ISO/IEC/IEEE, “15026-1:2019, Systems and software engineering –
Systems and software assurance – Part 1: Concepts and vocabulary,”
2019.

[44] R. Wieringa and M. Daneva, “Six strategies for gener-
alizing software engineering theories,” Science of Computer
Programming, vol. 101, pp. 136–152, 2015, towards gen-
eral theories of software engineering. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167642314005450

