
Modeling of Natural Language Requirements
based on States and Modes

Yinling LIU and Jean-Michel BRUEL
IRIT-CNRS, Université de Toulouse

Toulouse, France
{firstName}.{lastName}@irit.fr

Abstract—The relationship between states (status of a sys-
tem) and modes (capabilities of a system) used to describe
system requirements is often poorly defined. The unclear
relationship could make systems of interest out of control
because of the out of boundaries of the systems caused by
the newly added modes. Formally modeling requirements
can clarify the relationship between states and modes,
making the system safe.

To this end, the MoSt language (a Domain Specific
Language implemented on the Xtext framework) is proposed
to modeling requirements based on states and modes. In this
article, the relationship between states and modes is firstly
provided. The metamodel and grammar of the language are
then proposed. Finally, a validator is implemented to realise
static checks of the MoSt model. The grammar and the
validator are integrated into a publicly available Eclipse-
based tool. A case study on requirements for designing cars
has been conducted to illustrate the feasibility of the MoSt
language. In this case study, we injected 9 errors. The results
show that all the errors were detected in the static analysis.

Keywords—States and Modes, Requirements Modeling,
Domain Specific Language.

I. Introduction

The ambiguity between states and modes threatens
the safety of complex systems. If there is a problem
during the development of the system, the Engineering
mindset would possibly be to add one capability to
prevent another capability or a scenario from occurring
[1]. These capabilities have their limitations and could
cause a system to fail because the values of variables
exceed the thresholds of the system boundary. Thus, we
need to know clearly the capabilities and the boundaries
of the system. People tend to describe capabilities by
using modes and states. For example, they could say that
the aircraft is either in mode taxi or in state taxi. Here we
argue modes and states represent the capabilities and the
boundaries of the system, respectively. In other words,
modes can actively influence system behaviors. Modes
show more capabilities. While states are changed when
conditions are satisfied.

Various aspects have been emphasized to analyse
requirements, including context [2], the failures and
successes of other requirements [3], and requirements
evolution [4]. However, to the best of our knowledge,
no one performs the modeling and verification of re-
quirements based on states and modes. The requirement

analysis benefits a lot from the proper usage of states
and modes. They enable us to describe requirements
that exist outside the normal operating environment
[5]. They also aid in translating the user’s version into
the physical realization of the system [1]. They can be
used as a medium to reduce misunderstandings between
stakeholders such as users, acquirers, and developers as
well [6].

Domain-Specific Languages (DSLs) are programming
languages or specification languages that target a specific
problem domain [7]. When the domain of one problem is
covered by a particular DSL, we will solve that problem
in an easier and faster way via using that DSL rather than
a general-purpose language like Java or C, etc. In our
case, we aim to create a new DSL to assist users to write
requirements in a controlled natural language. In this
way, requirements can be better organized, expressed,
and understood. On the other hand, writing require-
ments in natural languages is easier and more acceptable
for stakeholders. Proper DSLs are helpful in writing
“correct” requirements. They are just the requirements
that satisfy syntactic rules and validator rules. Validator
rules are user-defined. For example, naming rules of the
elements in requirements can be defined in the validator
then the requirements can be checked by the defined
naming rules. Thus, in this paper, a DSL - MoSt (stands
for Modes and States) has been proposed to model
requirements based on states and modes. The MoSt
language was implemented using the Xtext framework
[7].

Furthermore, the MoSt language has been used to
model the requirements of designing a car. All the
injected errors in the MoSt model have been success-
fully detected. Requirements engineers can use the MoSt
modeling language to formalize requirements, so as to
better organize, accurately express, and effectively man-
age requirements. The extracted information on states
and modes can serve as ”standard” terms when team
members communicate with each other. So, unnecessary
conflicts on the system description can be avoided.

The remainder of this paper is structured as follows.
Section II briefly reviews the main related work. Section
III presents all the elements about how to design the
MoSt modeling language. Section IV gives a systematic

evaluation of the language to illustrates its feasibility.
Section V concludes the paper with future perspectives.

II. Literature Review

A. Requirements Modeling

A majority of work focuses on how to design a new
language to facilitate requirements analysis. The new
languages proposed include EARS [8], OCLTM [3], FRET
[9], etc. Most of the languages are dedicated to better
requirements eliciting and verification. Different view-
points of analyzing requirements have been considered,
including developers [10], uncertainty [4], [2], awareness
requirements [3], machine learning requirements [11],
etc. To the best of our knowledge, none of the work an-
alyzes requirements from both users and developers. In
other words, the viewpoint of states and modes has not
been sufficiently addressed in analyzing requirements.
This may lead to misunderstandings between users and
developers, which can cause conflicts in systems valida-
tion. Inconsistency could happen in development teams
as well, which gives rise to conflicts in system design. As
a result, we are so motivated to conduct requirements
analysis from the viewpoint of states and modes.

III. The MoSt Modeling Language

A. Relationship between States and Modes

In this paper, we propose our proper definitions of
modes and states. We argue modes are the abstraction
of use cases as [1] mentioned. Modes transitions hap-
pen only when the corresponding signals are received.
Modes own capabilities to change the values of certain
attributes. The values of these attributes are ones of
conditions inside states. States hold certain conditions.
States transitions happen when the corresponding con-
ditions are satisfied.

B. MoSt Metamodel

The MoSt metamodel highlights the properties of
the MoSt Modeling Language. As shown in Fig. 1,
MoSt is capable of describing NLRs (Natural Language
Requirements) and formal requirements. Even though
formal requirements are also modelled by the natural
language, this natural language should conform to cer-
tain rules. The NLRs enable us to capture the important
information from the requirement documents as much
as possible, in order to serve traceability in case of
troubleshooting.

MoSt focuses on describing functional and non-
functional requirements. MoSt-based formal require-
ments consist of concepts Mode, State, Constraint and
EnvironmentRequirement. The reason why we need to
introduce the last two concepts is that the MoSt model
is supposed to support formal verification. This idea
demands that the MoSt model must be self-included
to make it verifiable. The concepts of Mode, State,

and Constraint describe functional requirements. Non-
functional requirements can only be expressed via Con-
straint concept. More specifically, concepts PropertyCon-
straint depicts functional and non-function requirements
to be checked. On the other hand, EnvironmentRequire-
ment concept initializes values and ranges of system
attributes.

Concept Condition is one of the most important con-
cepts in this meta-model, which includes conditions
ModeCondition, StateCondition, AttributeCondition, Sig-
nalCondition, ArithmeticCondition, and Relation. Concept
Relation is used to enrich the expressive power of MoSt,
which enables guards to be any of conjunctions, dis-
junctions, and conjunctions and disjunctions of specific
conditions. However, concepts of ModeTransition and
EnvironmentRequirement are exceptional, which are di-
rectly associated with specific conditions. The former is
because the trigger conditions of modes transitions are
only signal conditions. The latter is because environment
requirements are only used to describe initial status of
variables.

C. MoSt Grammar

The MoSt grammar illustrates the rules describing
how to write different types of requirements. Every
rule contains a name, a colon, a syntactic form, and a
semicolon. The first rule of the grammar defines where
the parser starts and the type of the root element of
the MoSt model is MoSt. The shape of MoSt elements is
expressed in its own rule:

MoSt: models+=(Requirement | NLRequirement)*;
A collection of Requirement or NLRequirement elements
are stored in feature models of a MoSt object. Formal
requirements are stored in Requirement objects. NLRs
are stored in NLRequirement objects. Note that += and
* operators mean it is a collection and the number of
elements is arbitrary respectively.

1) Natural Language Requirements: The natural lan-
guage requirement rule is illustrated as follows:
NLRequirement: nlReqID=ReqID ID (ID)* ’.’;
ReqID:’[’ reqID+=INT (’.’ reqID+=INT)* ’]’;
It implies that NLRs begin with the ReqID (the identity
of requirements) like ”[1.2.3...N]”. So this naming rule of
ReqID signifies there is no limit to the number of NLRs.
This rule applies to all the other requirements as well.
As for ID, there is no rule defining it because that is one
of the rules from the Terminals (mentioned in Xtext). It
allows us to write any words as we want. As a result, the
rule of NLRs is just to write natural language sentences
with identities.

2) Formal Requirements: Formal requirements include
Environment, MODE, STATE, ATTRIBUTE, and PROP-
ERTY. The rule of formal requirements is represented
as follows:
Requirement: ENVIRONMENT | MODE | STATE | AT-
TRIBUTE | PROPERTY;

Figure 1. The MoSt metamodel

Two generic templates are used including “when...,
then...” and “... should be”. This first template applies to
mode, state, property, and constraint requirements. The
second template applies to environment requirements.
The first one implies when pre-conditions of the systems
are satisfied, then the system can get the post-conditions
satisfied. The idea is basically from Hoare Triple logic
[12]. That’s why we would like to use different kinds
of specific conditions to define pre-conditions, post-
conditions. Our template is similar to one of EARS
template “WHEN <optional preconditions> <trigger>
the <system name> shall <system response>” [8]. We
argue “when..., then...” can express all the templates
mentioned in their work in an abstract way. Because we
think pre-conditions can express the characteristics of
all their templates including ubiquitousness, events, un-
wanted behaviours, states, and optional features. Ubiqui-
tousness can be expressed by “mode = normal”. Optional
features can be described by “mode = A” (A is related to
optional features). The other characteristics are naturally
supported by the first template. The second template
declares constraints for variables, which are suitable

for describing environment requirements. Besides, this
mapping illustrates the expressive power of MoSt. To
save space, we choose to just discuss four rules - EN-
VIRNOMENT, MODE, STATE, and PROPERTY.

1). Environment Requirements
Environment requirements are dedicated to describing

initial statuses of variables, including the initialized
values and the ranges of variables. That’s why the rules
of these requirements involve ATTRIBUTEVALUE, UNIT
and RANGE. The rules of environment requirements are
shown as follows:
ENVIRONMENT: envirReqID=ReqID ID envirVari-
able=ID (ID)* ((’initialised’ ’to’ envirAttribute-
Value=ATTRIBUTEVALUE envirUnit=UNIT |
range=RANGE)) (ID)* ’.’ ;

An example of environment requirements can be writ-
ten as follows: [1] The accSpeed should be initialised to 0
m/s2.

2). Mode Requirements
Mode requirements explain mode transitions that

are associated with mode and signal conditions. Mode
conditions indicate which mode the system is in. Signal

conditions imply the condition for triggering mode
transitions. The rules of mode requirements are listed
as follows:
MODE: modeReqID=ReqID ’when’ preModeCondition
=MODECONDITION relation= RELATION guard=
SIGNALCONDITION ’,’ ’then’ postModeCondition =
MODECONDITION’.’ ;

An example of mode requirements can be written as
follows: [2] when the car is in mode economic and it receives
Ac signal, then it is in mode sportive.

3). State Requirements
State requirements describe system functional

requirements via state transitions. Three conditions are
able to trigger state transitions, including attribute,
mode, signal conditions. The rules of state requirements
are illustrated as follows:
STATE: stateReqID=ReqID ’when’ preStateCondition
=STATECONDITON (relations+=RELATION guards
+= (ATTRIBUTECONDITION | MODECONDITION |
SIGNALCONDITION))* ’,’ ’then’ postStateCondition =
STATECONDITON ’.’;

An example of state requirements can be written as
follows: [3] when the car is in state accelerate and it receives
Auto signal and its accSpeed is equal to 10 m/s2, then it will
be in state autonomy.

4). Property Requirements
Property requirements aid in describing functional

requirements and non-functional requirements. They
will be used as properties that need to be checked.
Classic temporal logics (CTL and LTL) are considered
in our language. The rules of property requirements are
expressed as follows:
PROPERTY:
propertyReqID=ReqID ’when’ preOperator= (CTLOpera-
tor | LTLOperator) prePropertyConditions += (STATE-
CONDITON | ATTRIBUTECONTION | MODECONDI-
TION)* (preRelations+=RELATION prePropertyCondi-
tions += (STATECONDITON | ATTRIBUTECONTION |
MODECONDITION))* ’,’ ’then’ postOperator = (CTLOp-
erator | LTLOperator) postPropertyConditions += (STATE-
CONDITON | ATTRIBUTECONTION | MODECONDI-
TION)* (postRelations+=RELATION postPropertyCondi-
tions += (STATECONDITON | ATTRIBUTECONTION |
MODECONDITION))* ’.’;

An example of property requirements can be written
as follows: [4] when all globally the car is in state autonomy
and it is in mode economic, then all next it is not in state
accelerate.

IV. Evaluation

A. System description

This example is based on a UML state machine dia-
gram for a car1. The car has five states including Parking,

1https://www.softwareideas.net/a/1539/Car-States--UML-State-
Machine-Diagram- (accessed in May 2022)

Ignition, Start, Accelerate, and Autonomy. We assume that
this car has the function of the autonomous driving. The
details of the car’s state transitions are shown in Fig. 2.

Figure 2. The State Machine Diagram of a Car

Signals and attributes constitute the conditions for
state transitions. Modes influence the system behaviour
via changing the value of attributes. Here, We provide
this car with two modes economic and sportive. They
are related to variables accSpeed and displaySpeed. For
example, if the car is in mode economic and mode
sportive, it changes the accelerate speed to 5m/s2 and
10m/s2, respectively.

B. Requirements formalization
Formalizing requirements using MoSt can start with

either requirements documents or the state machine
diagram of the system. Since our case comes from a
diagram, we will formalize the requirements of the car,
based on Fig. 2. If we start from requirements docu-
ments, we will also need to extract the information of
state transitions. This project is publicly available on
GitHub2.

In the following, we provide examples for states, at-
tributes, modes, and property requirements, which are
illustrated as follows:
• State transition: [1.1] when the car is in state parking

and it receives PowerUp signal, then it will be in
state ignition.

• Attribute declaration: [2.1.1] The speed should be
initialised to 0 km/h.

• Mode transition: [6.1] when the car is in mode
sportive and it receives DeAC signal and its speed is
greater than 40 km/h, then it is in mode economic.

• Property declaration: [7.1] when all globally the car
is state autonomy and it is in mode economic, then
all next it is not in state accelerate.

C. Requirements Static Checking
Requirements static checking aims at verifying the

names of the MoSt model elements and ensuring the
requirement consistency from the user-defined rules.
Requirements static checks are triggered while writing
the MoSt code. If the user-defined rules are violated,
errors will pop up in the MoSt modeling editor.

2https://github.com/liuyinling/MoSt-Modeling-Tool.git

https://www.softwareideas.net/a/1539/Car-States--UML-State-Machine-Diagram-
https://www.softwareideas.net/a/1539/Car-States--UML-State-Machine-Diagram-
https://github.com/liuyinling/MoSt-Modeling-Tool.git

Requirements static checks include naming checks and
consistency checks. Naming checks in the MoSt model
concerning states, modes, and signals are: the names
of states and modes should start with a lower case;
the name of signals should begin with an upper case.
Consistency checks analyze the legality of requirements,
regarding user-defined rules. For example, one of our
rules is “Non-integer variables should only be initialised
once”. If two requirements are written as “[1.1] The
doorIsOpen should be initialised to FALSE.” and “[1.2]
The doorIsOpen should be initialised to TRUE.”, then
error “Non-integer variables should only be initialised
once! ’doorIsOpen’” will be shown on these two require-
ments. In the MoSt model, the 9 injected errors have
been detected by the static analysis, shown in Fig. 3.

Figure 3. Results of Requirements Static Checks

Static checks ensure the well-formedness of the system
requirements, which is very useful when there are a
number of requirements that are frequently evolving.

V. Conclusion and future work

NLRs modeling is never an easy thing. In this paper,
the MoSt language is designed and implemented to
model NLRs from the viewpoint of states and modes.
To design the language, we provide the clear relation-
ship between states and modes, the metamodel of the

language, and its grammar. To implement the language,
we use the Xtext framework to implement the designed
grammar. The static analysis of the MoSt modeling is
achieved via implementing user-defined rules.

The next step of our work is to study requirements
verification. Requirements verification can investigate
the impacts of the activation of one mode on system
beahviors. The future work will focus on implementing a
code generator to realise the transformation of the MoSt
model into the formal model so that the MoSt model can
be formally verified. We hope that the MoSt modeling
tool can be directly connected to external model checkers
to make the formal analysis transparent to users.

Acknowledgements

This work was supported by the Excellence Laboratory
“International Centre for Mathematics and Computer
Science in Toulouse” (CIMI Labex). The authors would
also like to thank their colleague Marc Pantel and all
the team from SAMARES Engineering for interesting
discussions about states and modes.

References

[1] C. S. Wasson, System engineering analysis, design, and development:
Concepts, principles, and practices. John Wiley & Sons, 2015.

[2] M. Ahmad, N. Belloir, and J.-M. Bruel, “Modeling and verification
of functional and non-functional requirements of ambient self-
adaptive systems,” Journal of Systems and Software, vol. 107,
pp. 50–70, 2015.

[3] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson, and J. My-
lopoulos, “Awareness requirements for adaptive systems,” in Pro-
ceedings of the 6th international symposium on Software engineering
for adaptive and self-managing systems, pp. 60–69, 2011.

[4] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
“Relax: Incorporating uncertainty into the specification of self-
adaptive systems,” in 2009 17th IEEE International Requirements
Engineering Conference, pp. 79–88, IEEE, 2009.

[5] A. M. Olver and M. J. Ryan, “On a useful taxonomy of phases,
modes, and states in systems engineering,” in Systems Engineer-
ing/Test and Evaluation Conference, Adelaı̈de, Australia, 2014.

[6] M. Edwards, “A practical approach to state and mode definitions
for the specification and design of complex systems,” in Systems
Engineering Test and Evaluation. Practical Approaches for Complex
Systems Conference, Rydges Capital Hill, Canberra, Australia, 2003.

[7] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd, 2016.

[8] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy
approach to requirements syntax (ears),” in 2009 17th IEEE
International Requirements Engineering Conference, pp. 317–322,
IEEE, 2009.

[9] D. Giannakopoulou, T. Pressburger, A. Mavridou, and J. Schu-
mann, “Automated formalization of structured natural language
requirements,” Information and Software Technology, p. 106590,
2021.

[10] H. J. Goldsby, P. Sawyer, N. Bencomo, B. H. Cheng, and
D. Hughes, “Goal-based modeling of dynamically adaptive sys-
tem requirements,” in 15Th annual IEEE international conference
and workshop on the engineering of computer based systems (ecbs
2008), pp. 36–45, IEEE, 2008.

[11] S. Nalchigar, E. Yu, and K. Keshavjee, “Modeling machine learn-
ing requirements from three perspectives: a case report from the
healthcare domain,” Requirements Engineering, pp. 1–18, 2021.

[12] C. A. R. Hoare, “Procedures and parameters: An axiomatic ap-
proach,” in Symposium on Semantics of Algorithmic Languages
(E. Engeler, ed.), vol. 188 of Lecture Notes in Mathematics, pp. 102–
116, Springer, 1971.

	Introduction
	Literature Review
	Requirements Modeling

	The MoSt Modeling Language
	Relationship between States and Modes
	MoSt Metamodel
	MoSt Grammar
	Natural Language Requirements
	Formal Requirements

	Evaluation
	System description
	Requirements formalization
	Requirements Static Checking

	Conclusion and future work
	References

