
Approach to Generating Functional Test Cases from
BPMN Process Diagrams

Pauline von Olberg
Fraunhofer FOKUS

Berlin, Germany
Email: pauline.von.olberg@fokus.fraunhofer.de

Lukas Strey
Fraunhofer FOKUS

Berlin, Germany
Email: lukas.strey@fokus.fraunhofer.de

Abstract—Business Process Model and Notation (BPMN) is a
popular and widespread modelling language used to describe
business processes. These BPMN business process models can
serve as a foundation for functional software testing. Functional
software testing is an important part of software development,
which ensures that software works as expected and that it
includes all the desired functionality, as defined in the process
models. This position paper presents an approach and considers
two different methods on how to automatically create functional
test cases from BPMN business process models. The generated
test cases shall be understandable for all stakeholders and
abstracting from the technical implementation. To achieve this
general understandability of the test cases, Gherkin is used as a
test case definition language. The two proposed methods will be
developed and evaluated in future work. This planned evaluation
includes comparing the automatically created test cases with
manually created ones.

Index Terms—BPMN, functional software testing, Gherkin,
business process modelling

I. INTRODUCTION

In this position paper we explore the generation of func-
tional test cases on the basis of BPMN process diagrams. We
aim to give an overview over existing work and propose our
own approach alongside two specific methods, which will be
developed, tested and evaluated in further work. The following
sections give an introduction into the basic concepts used in
this paper, followed by the related work and our approach.
Lastly, we give an overview over two possible solutions and
the planned next steps.

A. BPMN

The Business Process Model and Notation (BPMN)
modelling language is a cross-sector de facto standard
provided by the Object Management Group (OMG), used for
describing business processes [1]. BPMN defines different
types of diagrams, among which is the commonly used
process diagram, which defines different kinds of business
activities that are connected with each other through a control
flow. This control flow can additionally be enriched with
various types of gateways, forking and joining the flow. Not
only will a process diagram modelled with BPMN depict
the different steps of a business process, but it will also
give some contextual information about the participants
involved in the process and, more precisely, which role or

unit of an organisation is responsible for fulfilling certain
sequences of tasks. Furthermore, a BPMN process diagram
offers capabilities to capture message flows between different
participants, and there are also options for modellers to
make use of multiple types of events in the control flow as
well as associations to data objects, annotations and more
(see Figure 1). Overall, BPMN allows for semantically rich
and precise documentation of business processes, alongside
enabling organisations to communicate their processes in a
standardised manner.

B. Functional Software Testing

Besides the purpose of communicating and documenting
business processes, BPMN diagrams can also function as a
starting point to creating functional test cases for the respective
software products. Functional test cases specify behavioural
scenarios. These can be derived from the sequence flows
modelled in the process diagrams.

Functional test cases are a core piece of functional
software testing, which is a type of software testing that
validates the developed software system against the functional
requirements. It ensures that the system works as expected
and that it offers all the desired functionalities, which can
be extracted from the BPMN process diagrams. Therefore,
functional software testing, alongside non-functional software
testing, contributes to assuring that the quality criteria of a
software product are met [2, 3].

C. Use Case

In the process of modernising the federal budget procedures
of Germany, the need to automatically create functional test
cases based on existing BPMN process diagrams emerged,
which is why we have chosen this project context as a specific
use case. The project is an overarching activity that aims to
support the federal procedures of the German Ministry of
Finance with modernised software solutions. This includes
processes like the creation of the federal budget or the
planning of personal resources in the federal administration.
As such, quality of the developed software products is of
upmost importance. The processes that shall be modernised
can be clearly defined, and to establish an understanding by



all stakeholders, many of them have already been modelled as
BPMN process diagrams. To ensure the necessary quality of
the developed software and to facilitate trust in the solution,
it shall be extensively tested. This testing shall include the
desired functionality modelled with BPMN. Documenting the
generated test cases in a universal and abstract language is
a target, so that all teams within the project context can use
the test cases as a foundation for test-driven development,
independently of the teams’ technology stack. This allows
for automation in the development process. An automated
generation that would only need to be verified, would
additionally alleviate the workload of the context experts,
solving an existing bottleneck in the project.

Fig. 1. Subset of BPMN elements

II. RELATED WORK

There has been a multitude of research conducted on the
topic of functional test case generation from BPMN process
diagrams. Firstly, [4], [5] and [6] present approaches that
involve supplementary inputs for the test case generation
besides BPMN process diagrams. In [4], authors present a
tool for test case generation from a BPMN diagram together
with a Business Process Execution Language (BPEL) diagram
and an XML Schema Definition. BPEL diagrams are used
to explain service behaviours. [5] is a recently published
work that presents an approach to generate test cases from
BPMN with DMN (Decision Model and Notation). Paths
traversing from the entry to the exit of the BPMN model
alongside existing test cases and DMN rules are inputs of this
method. Whereas [6] focuses on input variables in the BPMN
diagram, which have to be manually filled in by the user if the
information of the variables that are necessary for creating test
cases is incomplete. In [7], the authors focus on an approach
for generating test cases from a process diagram, where they
first extract business rules from that diagram and then generate

test cases based on those rules. Further, the authors state that
the generated test sequences are more oriented towards manual
testing. Considering that most of the already existing process
diagrams in the project context of the modernisation of the
federal budget procedures of Germany do not include any
business rules, and considering that our goal is to focus on
the automated generation of test cases, written in Gherkin, we
see the need to extend upon this work. Researchers in [8] use
the category partition method (CPM) to generate test cases
from business process models. CPM automatically generates
test frames based on all possible paths generated from the
model, which can then be used to generate the final test
cases. The researchers also compared the automatically built
test cases with traditionally constructed test cases based on
requirements. The outcome was in favour of the automatically
generated test cases in terms of time needed to generate test
cases, completeness, code coverage and more [8]. Lastly, [9]
and [10] describe approaches that are similar to the one we
present in this paper, as the output of those methods are test
cases written in Gherkin, a language close to the business level,
not containing any technical details. [10] suggests a method
to generate test cases from BPMN models, for automated
testing of web applications implemented with the support of
BPM suites. This method consists of (i) identifying execution
paths from the flow analysis in the BPMN model and (ii)
generating the initial code of test scripts to be run on a given
web application testing tool based on Selenium and Cucumber,
but only manual tasks that can be performed by users have
been evaluated for the test case generation. ETAP-Pro [9] is a
test automation platform based on a keyword-driven approach,
which is the most comparable to our approach. However,
the keyword-driven approach, along with all other presented
approaches, still does not cover all relevant information from
the BPMN diagrams, leaving several open gaps, which is why
we intend to use a more comprehensive method. Questions
that are being omitted by the authors of [9] are, for example,
how to deal with the various types of loops and events in
a process diagram. Further, they did not consider information
about the different participants, components or roles of a busi-
ness process. We therefore aim to promote a more extensive
and holistic approach that includes all relevant information
regarding the functionality of the business processes and the
respective software system.

III. OUR APPROACH

To solve the problems we have highlighted in the intro-
duction, namely generating understandable test cases from
existing BPMN diagrams, we aim to extend upon the presented
related work. Our goal is to automate the test case generation
whilst enabling the verification of these test cases by project
stakeholders. The automation shall decrease the workload of
the context experts needed to verify the process implementa-
tion. Our approach aims to consider and utilise all relevant
semantic elements that may appear in the diagrams.

Besides the objective to create test cases that can be under-
stood and verified by stakeholders with the corresponding busi-



Fig. 2. Comparison of elements and patterns considered between Paiva et al. [9] and our suggested approach

ness knowledge, we additionally want to ensure that the test
cases are independent of the specific technical implementation
of the software system. In the given project context, compo-
nents are implemented with various programming languages,
and we therefore need a notation that maintains independent
of these technicalities, so that our approach can be consistently
used throughout the entire project.

It is for these reasons that we decided to generate test
cases in the form of Gherkin scenarios, just as the authors
did in [9, 10]. Gherkin is a logical language that is used to
formulate test cases on an abstract level without going into
implementation details. It is a domain specific language that
uses plain English or other spoken languages if preferred.
Gherkin has been developed in connection with Cucumber,
which is an open-source tool that supports the automation
of test scenarios formulated with the Gherkin language.1

However, in our approach, we purely focus on the creation of
the Gherkin files themselves. A single Gherkin Feature File
corresponds to a single process diagram, and it may contain
multiple scenarios. A scenario in Gherkin is a list of steps.
Each step begins with one of the keywords ’Given’, ’When’,
’Then’, ’But’ or ’And’ (see Figure 3). Gherkin also defines a
concept to group ’Given’-steps together that appear in every
scenario of a feature file under a Background section, which
helps to manage redundancy. Additionally, there are options
to write comments in the test cases, and options to run the
same scenario multiple times with different combinations of
values.2

Fig. 3. First Gherkin scenario example

1https://cucumber.io/docs/guides/overview/ (Accessed: 05.07.2022)
2https://cucumber.io/docs/gherkin/reference/ (Accessed: 02.06.2022)

Fig. 4. Example BPMN process diagram

Gherkin offers the advantage that non-technical profession-
als as well as product owners can understand and approve the
resulting test cases swiftly, which reduces the effort for this
personnel bottleneck.

Further, our goal is to automate the creation of these test
cases based on already existing BPMN diagrams. With regard
to that, we propose two different methods for the automatic
creation of the desired test cases in the next section of this
paper.

As mentioned before, in contrast to [9], our approach
aims to consider a wider range of BPMN elements for more
comprehensive and unambiguous test cases. Figure 2 displays
an overwiev of this.

Figure 4 shows an example process diagram modelled with
BPMN. The example is taken out of the presented project
context, but it has been considerably simplified and generalised
in order to fit into the scope of this position paper and for
confidentiality reasons. Figure 3 shows an exemplary Gherkin
scenario derived from this diagram. The example shows a
basic transformation from BPMN process steps to a Gherkin
keyword representation while also including the BPMN pool
information. This transformation can serve as a starting point
for further development, with the aim to represent more



complex functional scenarios.

IV. POSSIBLE SOLUTIONS FOR FUTURE DEVELOPMENT

In this position paper, we discuss two general methods that
we consider for automatically creating Gherkin test cases from
business process diagrams modelled with BPMN.

A. Method 1 - Using an intermediate transformation

The idea behind the first method is to include an intermedi-
ate transformation step on the way from BPMN to Gherkin. A
transformation of a BPMN diagram to a Petri net, for instance.
Petri nets are just one specific option here but another kind
of formal model could also be considered. The goal of this
intermediate transformation step is to take some complexity
out of the semantically rich BPMN model by first transforming
it to a more formal and simpler model and then transforming
this intermediate model to Gherkin scenarios in a second step.

We have considered Petri nets in particular because there
have already been a number of researches conducted on the
topic of automatically converting BPMN process diagrams to
Petri nets, like [11] and [12], and these approaches already
consider a broad range of elements for the transformation. In
addition, Petri nets not only help reduce complexity but they
also allow for the semantic correctness of BPMN diagrams to
be formally validated. This includes checking for deadlocks,
livelocks and other inconsistencies [11].

Petri nets further make it easy to work with path and
transition coverage, since a Petri net only consists of places
and transitions, which allows for straightforward determination
of the different paths that tokens may take.

However, there are also issues that need to be considered re-
garding this intermediate transformation step. Since Petri nets
or other formal models are much more simplistic than BPMN,
it is a challenging task to ensure that no relevant information
is lost in the process. It must be carefully determined which
information can be extracted from the BPMN diagrams and
how this information can be reduced and translated to the
intermediate model. The challenge is to find the right balance
between complexity reduction and integrity of the information.

B. Method 2 - Direct transformation

In contrast to the aforementioned method with a formal
model as an intermediate step, a different method could be
used that enables a direct transformation from BPMN to
Gherkin via a pattern matching. The advantage of such a
method is that no information is lost through intermediate
transformation steps. The entire set of BPMN elements and
patterns serves as a base for the pattern matching. Even
annotations and information about roles and components from
BPMN swim lanes and pools can be included. However, it is
a complex task to create a comprehensive and unambiguous
pattern matching between all relevant BPMN elements and the
rather simple Gherkin syntax.

First, it needs to be exactly determined which informa-
tion, namely which BPMN elements and patterns, are to be
considered as relevant and thus need to be extracted from

the diagrams and represented in the test cases. Here, it can
be helpful that in practise only a small subset of BPMN
elements are commonly used [13]. Secondly, a definite and
unambiguous translation from each relevant element or pattern
to the elements of the Gherkin syntax has to be decided
upon in order to construct a consistent pattern matching.
Specifically, the latter will be a challenging task, considering
the big discrepancy between the expressive graphical notation
of BPMN and the simple plain text notation of Gherkin.

V. CONCLUSIONS AND OUTLOOK

In this position paper, it became clear that there is a need
to automatically generate functional test cases from BPMN
process diagrams and a need to extend upon already existing
work. The project context of the modernisation of the federal
budget procedures of Germany highlights this necessity. In
this project, business process diagrams already exist and the
automatic generation of test cases, based on these diagrams,
in an easily understandable language such as Gherkin, would
decrease the workload of the context experts.

Fig. 5. Second Gherkin scenario example

We discussed two possible methods in this paper that could
be used to generate the desired test cases. A method that
includes an intermediate transformation from BPMN to a more
formal model to help reduce complexity, and a method that
supports a direct conversion from BPMN to Gherkin, using
a pattern matching. Both methods are not yet fully matured,
which is why we intend to elaborate on them in future re-
search. This involves further developing, testing and evaluating
them. The evaluation will be performed within the given
project context, which provides the necessary data to perform
the tests on. One of the goals for future research work is to also
consider how this test data could possibly be integrated into
the Gherkin scenarios, and how the scenarios can be further
tailored to specifically test that data. An explorative example
is shown in Figure 5, which offers an alternative to Figure 3
and includes specific test data.

After all, both in this paper proposed methods will be
used to automatically generate test cases written in Gherkin,
which will be evaluated by context experts, comparing the
automatically generated test cases with manually created ones.
Criteria of this evaluation will be understandability, accuracy
and test coverage among others. This will serve as a basis for
the comparison of the developed methods with the intention to
determine wether an intermediate transformation step between
BPMN and Gherkin is beneficial or if the loss of information
during this intermediate step would be too severe.



REFERENCES

[1] OMG. Business Process Model and Notation Specifica-
tion Version 2.0. Object Management Group, 2011.

[2] Gerald D. Everett and Jr. Raymond McLeod. Software
Testing - Testing Across the Entire Software Develop-
ment Life Cycle. IEEE Press and Wiley-Interscience,
2007.

[3] IEEE. “IEEE Standard Glossary of Software Engineer-
ing Terminology”. In: IEEE Std 610.12-1990, pp. 1-84
(1990).

[4] Chaithep Nonchot and Taratip Suwannasart. “A Tool
for Generating Test Case from BPMN Diagram with a
BPEL Diagram”. In: Proceedings of the International
MultiConference of Engineers and Computer Scientists
IMECS 2016 Vol I (2016).

[5] Boodsarin Boonmepipit and Taratip Suwannasart. “Test
Case Generation from BPMN with DMN”. In: Pro-
ceedings of the 2019 3rd International Conference on
Software and e-Business, December 2019, pp. 92-96
(2019).

[6] P. Yotyawilai and T. Suwannasart. “Design of a tool
for generating test cases from BPMN”. In: Interna-
tional Conference on Data and Software Engineering
(ICODSE), 2014, pp. 1-6 (2014).

[7] S. Sriganesh and C. Ramanathan. “Externalizing busi-
ness rules from business processes for model based test-
ing”. In: IEEE International Conference on Industrial
Technology, 2012, pp. 312-318 (2012).

[8] Sarah Khader and Rana Yousef. “Utilizing Business
Process Models to Generate Software Test Cases”.
In: IJCSI International Journal of Computer Science
Issues, Volume 13, Issue 2, March 2016 (2016).

[9] Ana Paiva et al. “End-to-end Automatic Business Pro-
cess Validation”. In: Procedia Computer Science, Jan-
uary 2018, volume 130, pp. 999-1004 (2018).

[10] J. C. D. Lima J. L. de Moura A. S. Charão and B.
de Oliveira Stein. “Test case generation from BPMN
models for automated testing of Web-based BPM ap-
plications”. In: 17th International Conference on Com-
putational Science and Its Applications (ICCSA) (2017).

[11] Muhammad Umair Mutarraf et al. “Transformation of
Business Process Model and Notation models onto Petri
nets and their analysis”. In: Advances in Mechanical
Engineering (2018).

[12] Mohamed Z. Ramadan, Hicham G. Elmongui, and
Riham Hassan. “BPMN Formalisation using Coloured
Petri Nets”. In: Software Engineering Applications,
ACTA (2011).

[13] M. zur Muehlen und J. Recker. “How Much Language
is Enough? Theoretical and Practical Use of the Busi-
ness Process Modeling Notation”. In: Proceedings of
the 41st Hawaii International Conference on System
Sciences (2008).


